skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xing, Yalan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The development and application of the asymmetric synthesis of oligosaccharides from achiral starting materials is reviewed. This de novo asymmetric approach centers around the use of asymmetric catalysis for the synthesis of optically pure furan alcohols in conjunction with Achmatowicz oxidative rearrangement for the synthesis of various pyranones. In addition, the use of a diastereoselective palladium-catalyzed glycosylation and subsequent diastereoselective post-glycosylation transformation was used for the synthesis of oligosaccharides. The application of this approach to oligosaccharide synthesis is discussed. 
    more » « less
  2. In this review, we present an assessment of recent advances in alkyne functionalization reactions, classified according to different classes of recyclable catalysts. In this work, we have incorporated and reviewed the activity and selectivity of recyclable catalytic systems such as polysiloxane-encapsulated novel metal nanoparticle-based catalysts, silica–copper-supported nanocatalysts, graphitic carbon-supported nanocatalysts, metal organic framework (MOF) catalysts, porous organic framework (POP) catalysts, bio-material-supported catalysts, and metal/solvent free recyclable catalysts. In addition, several alkyne functionalization reactions have been elucidated to demonstrate the success and efficiency of recyclable catalysts. In addition, this review also provides the fundamental knowledge required for utilization of green catalysts, which can combine the advantageous features of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis. 
    more » « less
  3. null (Ed.)
    Abstract In recent years, advancements in photocatalysis have allowed for a plethora of chemical transformations under milder conditions. Many of these photochemical reactions utilize hydrogen atom transfer processes to obtain desired products. Hydrogen atom transfer processes can follow one of two unique pathways: the first, a direct path and the second, an indirect path. In this paper, we highlight the ability of eosin Y to act as a direct hydrogen atom transfer catalyst from both synthetic and computational chemistry perspectives. 
    more » « less
  4. Abstract An asymmetric approach toward the synthesis of the marine natural product aspergillide‐C has been developed. The convergent asymmetric synthesis uses two asymmetric Noyori transfer hydrogenations to enantioselectively prepare the two key fragments, aC‐1 toC‐7 pyranone fragment and aC‐8 toC‐14β‐keto‐sulfone fragment. The absolute stereochemistry of the pyranone fragment was established by a Noyori reduction ofβ‐furylketoester to form a furyl alcohol. An Achmatowicz rearrangement was used to stereoselectively convert the furyl alcohol in to the key pyranone fragment. The absolute stereochemistry of theβ‐keto‐sulfone fragment was established by a Noyori reduction of an ynone to form a propargyl alcohol. An alkyne zipper isomerization was used to stereospecifically convert the propargyl alcohol in to theβ‐keto‐sulfone fragment. Finally, a Pd‐catalyzedC‐glycosylation was used to diastereoselectively couple the two fragments, which when combined with a reduction and Julia‐Kocienski type elimination formed a protected variant of the 4‐epi‐seco‐acid of aspergillide‐C. 
    more » « less
  5. null (Ed.)
    A highly efficient benzylic hydroperoxidation has been realized through a visible-light-induced Csp3−H activation. We believe that this reaction undergoes a direct HAT mechanism catalyzed by eosin Y. This approach features the use of a metal-free catalyst (eosin Y), an energy-economical light source (blue LED), and a sustainable oxidant (molecular oxygen). Primary, secondary, and tertiary hydroperoxides as well as silyl, benzyl, and acyl peroxides were successfully prepared with good yields and excellent functional group compatibility. 
    more » « less